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Transition from regular to Mach reflection of shock waves 
Part 1. The effect of viscosity in the pseudosteady case 
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It is demonstrated experimentally that the influence of viscosity on the transition 
condition in pseudosteady flow is very significant. A mechanism is proposed for this 
effect, which explains the features of the observed behaviour. In  particular, an 
experimental method of finding the inviscid transition condition, by extrapolation 
to infinite Reynolds number, gives excellent agreement with the calcwlatcd inviscid 
sonic criterion. It is thought that this provides the explanation for the usual 
persistence of regular reflection beyond the sonic: condition. 

1. Introduction 
The condition for transition from regular to Mach reflection of shock waves has 

been observed to depend on whether it occurs in steady, pseudosteadyf or unsteady 
flow (see e.g. Hornung, Oertel & Sandeman 1979; Henderson & Lozzi, 1975, 1979; 
Heilig 1969) and on whether the incident shock is ‘strong’ or ‘weak’ (see c.g. 
Henderson & Siegenthaler 1980). We consider the case of a strong shock in 
two-dimensional, pseudosteady flow of a thermally and calorically perfect, viscous 
gas. 

In  this regime the reflection configurations that occur can be classified into three 
types as shown in figure 1 (see e.g. Ben Dor & Glass 1979). For present purposes we 
collect all those configurations that exhibit a characteristic length in the vicinity of 
the reflection point (shown by figures l b ,  c)  into a single category and call it  Mach 
reflection, since our main interest is in the condition for failure of regular reflection. 
The regular-reflection configuration (figure 1 a )  is expected to occur when the speed 
of the point P is greater than a3. the speed of sound in region 3. Since no information 
about the leading edge of the wedge can then reach P ,  the flow near P cannot be 
influenced by it,  and consequently, in the inviscid case, exhibits no lengthscale. The 
condition when P travels just a t  the speed a3 is called the sonic condition. Let the 
shock angle a t  this condition be a: = a,. 

A Galilean transformation of a regular reflection to a frame of reference moving 
with the point P makes the flow in the vicinity of Y steady. In  this frame, the wedge 
and the gas in region 1 move at  a speed 

V, = V,/sina. (1) 

The incident shock I deflects the flow towards the wall through an angle B,, and the 
reflected shock R deflects i t  back to a direction parallel to the wall (see figure 2 a )  
through an angle 8, = BI. ( 3 )  

-) Present address: DFVLR-AVA, 34 Gottingen, Bunsenstr. 10, W. Germany 
1 Linear growth of features with time. 
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( a )  ( b )  (C) 

FIGURE 1. Pseudosteady-reflection configurations. The incident shock J travels into stationary gas 
at constant speed rrs from right, to left and strikes the st,ationary wedge. P, reflection point; R, 
refrcted shock. (a )  Regular reflection : (6) Simple Mach reflection ; . . . 1 . ., range of corner signal. 
(c) Double Mach reflection. - , shock; -. contact discontinuity: --, triple-point, trajectory. 

( a )  ( b  1 

FIGURE 2 .  Regular reflection viewed from a reference frame moving with P. ( a )  Inviscid flow 
(6) Inviscid model with boundary-layer displacement thickness S*. 

As a is increased, 8, increases until the reflected shock reaches the maximum 
deflection condition. Let, a = ad a t  this point. The difference betrwcen ad and a, is 
approximately 0.1' and will be neglected in the following. 

A t  this point we digress to define a 'strong ' shock: the incident shock is called strong 
if the pressure in region 3, a t  the condition a = ad,  is great'er than that after a shock 
travelling a t  speed into sbationary gas a t  the condit'ions of region 1 .  This 
corresponds to an incident shock Mach number greater than the value at  which 
ad = aN (see figure 3, Hornung & Robinson 1982). For weak shocks, Hcnderson & 
Sirgenthaler (1980) showed t'hat, the att,enuat<ion of the refleckd shock is important. 
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(a ) ( b )  

FIGVRE 3. The symmetrical arrangement for pseudosteady flow avoids the boundary-layer problem. 
( a )  Early time: the shock reflected from the oblique end wall of the shock tube becomes the 
‘inrident . shock 1. (b )  Later: the features of the regular reflexion of I off the symmetry plane can 
be identified with those of figure 2 (a). 

Though regular reflection is not theoretically possible for a > ad in pseudosteady 
flow, experimental results indicate that the transition occurs at significantly positive 
values of a-ad (e.g. Bleakney & Taub 1949; Kawamura & Saito 1956; Henderson 
& Lozzi 1975). However, by using the symmetrical configuration shown in figure 3, 
which replaces the wedge surface by a plane of symmetry, both Smith (1959) and 
Henderson & Lozzi (1975, figures 5a,  13) obtained results that give the transition angle 
a* as ad to within the experimental error, in agreement with theory. This difference, 
and the behaviour of the results of Takayama & Sekiguchi (1977) persuaded Hornung 
et al. (1979) to suggest a possible mechanism for the persistence of regular reflection 
beyond ad, involving the viscous boundary layer on the wedge surface. 

It is clear from figure 2 that V, > V,, so that the boundary layer forming 
downstream of P on the wedge surface in region 3 has a velocity profile as sketched 
in figure 3 ( b ) ,  with a negative displacement thickness of magnitude &*(.). The flow 
direction can therefore have a significant component perpendicular to the wall in 
region 3. This would change ( 3 )  to 

(3) &-& = € > 0, 

and therefore cause the maximum-deflection condition on the reflected shock to  be 
shifted to a larger value of a. Hornung et al. (1979) tested this mechanism only by 
making crude estimates on their own results. We wish to emphasize that this 
mechanism is not related to the viscous growth of the shear layer a t  the contact 
discontinuity that occurs in a Mach reflection after the triple point (see e.g. Sternberg 
1959; Skews 1971). The latter effect is not expected to influence the failure of regular 
reflection, because it is not present until a Mach reflection is established. 

The experiment described in the following sections was designed specifically to test 
the hypothesis of Hornung et al. (1979) about the effect of viscosity by measuring 
the transition angle a t  different Reynolds numbers, but a t  constant shock Mach 
number, in order to find if there is any detectable dependence of a* on Reynolds 
number, and, if so, to see if this dependence is consistent with simple boundary-layer 
ideas and with the inviscid value of a*. Some of the results of this work have been 
reported by Taylor & Hornung (1 980). 
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FIQURE 4. The inviscid model of the viscous effect defines the lengthscale 1, 
of the viscous regular reflexion. 

2. Expected behaviour of a* with Reynolds number 
2.1. The scale of the regular rejection 

Viewed in a frame of reference moving with the point P, the flow in the vicinity of 
the regular reflection point is steady. The presence of the boundary layer may be 
modelled by an inviscid flow with a displaced wall (see figure 4). (For a treatment of 
the problem of a shock-generated boundary layer, see Becker (1961).) In  this model, 
a streamline 8, passing through the incident shock I a t  a point close to the wall, is 
first deflected towards the wall by I .  It then undergoes an isentropic expansion 
followed by an isentropic compression to make it follow the displaced wall. The 
compression steepens into a shock further downstream, however, so that a streamline 
passing through the incident shock at a point far from the wall is deflected back to  
a direction approximately parallel to the displaced wall by this reflected shock R. 
The scale of the features of this flow can conveniently be defined by the distance 1, 
between P and the point Q ,  the intersection of the leading characteristic from P with 
the reflected shock. Clearly, I ,  will be scaled by the viscous lengthscale 

1, = PJP3 6, (4) 

where ,u is the viscosity, p the density and V the speed of the gas, and the subscript 
3 refers to conditions in region 3. If 1,  = 0 (inviscid flow) then 1, = 0 ,  and the 
regular-reflection configuration is devoid of a lengthscale. 

The shape of the displaced wall is given by 

X ( 5 )  

where C, is a constant of order 1 .  It is assumed that  I, + w, where w is the distance 
from the leading edge of the wedge to P. Fairly straightforward estimates of the 
inviscid gasdynamics of the reflection (figure 4) show that 

1Jlv x 10 (6) 
for the conditions of the experiment described in $3. 

In  order to estimate the effect of viscosity on the measured transition angle a*, 
i t  is necessary to relate 8,--19, = e to I,. However e continues to  decrease with 
distance downstream, and i t  is difficult to decide a t  which x it should be evaluated 
to determine the transition condition. 
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( a )  ( b )  

FIGURE 5. Illustrating how the viscous displacement effect can cause the Mach stem length s to  
become smaller than the smallest resolvable length A,  thus changing a Mach reflection t o  a regular 
reflection. (a )  Inviscid flow. ( b )  Viscous effect modelled by distributed sinks along the wall. 

SIW 

L 
(Y t 

FIGURE 6. (a) Expected behaviour of the dimensionless Mach stem length with a. ( b )  Expected 
behaviour of the transition angle a* with Reynolds number. The estimated slope of this line is 1.3 
(see ( 1  l ) ,  (12)). 

2.2. The appropriate lengthscale for the Reynolds number 

For the purpose of determining this length, it is more convenient to consider the 
Mach-reflection configuration. Viewed from the frame of reference fixed in the point 
of intersection P of the Mach stem and the wall, the flow is only steady in the 
immediate vicinity of the wall, since s grows with time (see figure 5 ) .  The rate of 
growth of s is determined by the reflected shock velocity V,. The displacement effect 
of the boundary layer is equivalent to a removal of mass a t  the wall and can be 
modelled by a distributed sink along the wa1l.t This leads to a reduction of pressure 
and consequently to a reduction of V,, and therefore of s. It may also be expected 
to shift the appearance of a Mach stem to higher a. 

This last effect is illustrated by figures 5 (a ,  b) .  The experimentally observed 
reflection configuration will be interpreted as a regular reflection if 

s < A ,  (7)  

t The displaced-wall model of $2.1 and this distributed sink model are equivalent. 
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V, (km s-')l.75f005 M s 5 5 + 0 2  UI (cm)2-5 
Pl ( T O W  5 0  100 25 70 
I, (pm) (a = 35O) 1.58 079 032 0.112 

TABLE 1 .  Experimental conditions 

where A is the smallest resolvable lengthscale of the observer. A circle of radius A is 
drawn schematically about P in figures 5 ( a ,  b ) .  Since s will only be observed if i t  is 
greater than A,  the transition condition is characterized by the lengthscale A. 
Therefore the range at which the strength of the displacement effect has to be 
evaluated for the purposes of the transition condition is A. 

When s w h only those distributed sinks that are within a distance of order A can 
significantly affect VR near the triple point. At a range of A, the viscous displacement 
effect, as measured by E = 01- (&),,A is given by 

By using the results of Mirels' (1956) calculationst and applying them to the 
boundary layer after a regular reflection a t  the conditions of our experiments (see 
table l) ,  the constant may be obtained as 

C, = 3.7. (9) 

Small changes of e affect a* in a linear fashion. Thus, .a series of numerical 
computations of the inviscid regular reflection, made a t  the point where the reflected 
shock is a t  the maximum-deflection condition, for various values of e ,  indicates that 
the linear approximation 

with C, = 0.70, applies to an accuracy better than k0.2" in the range 35' < CL < 43O 
(for conditions as in table 1 ) .  Hence, for large A l l ,  = ReA, it  may be expected that 

a* = (a*)E=#J+C,€, (10) 

a* = cr,*+C fh) i  = a,*+C(Re,)-i, (11)  

where a,* is the inviscid transition angle a t  1, = 0, and 

C = &', C, = 1.3. (12) 

2.3. Behaviour at large Mach stem length 

When s becomes large compared with I,, the effect of the displacement thickness on 
the speed of the reflected shock must decrease. This may be seen by comparing m,, 
the mass-flow rate in the boundary layer, with m,, the total mass flow rate through 
the Mach stem. As s l l ,  + 03, ms/ms must clearly go to zero. Consequently, it may 
be expected that the effect of viscosity disappears as sll,  increases. Putting this 
together with the usual behaviour of s/w with a (see e.g. Sandeman, Leitch & 
Hornung 1979) and with ( l l ) ,  it may be expected that the overall behaviour is as 
sketched in figures 6(a, b ) .  

t See also Schlichting (1965). 
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3. Experiment 
The experiment was conducted in the 7.6 cm diameter free-piston shock tube a t  

ANU known as T3. The free-piston driver technique is particularly suitable here. This 
is because our experiment requires the same shock speed to  be attained over a range 
of initial shock-tube pressure p,. The free-piston technique supplies this with 
continuous variability, because the driver temperature can be chosen by adjusting 
the compression ratio of the adiabatic piston compression. One problem, however, 
is that  the facility cannot easily be operated a t  low shock Mach number M ,  = V,/a,. 

To keep things as simple as possible, real-gas effects were avoided by choosing argon 
as test gas. Since this is relatively free of low-energy gas imperfections, a fairly high 
$Is can be used without violating the perfect-gas assumptions. By numerical 
computation of real-gas argon shock reflections, a suitable limit was found a t  
M,  = 5.5. Up to this value, and in the range of p1 of our experiments, real-gas effects 
cause the inviscid transition angle ad to change by less than 0 . 2 O .  The experimental 
conditions are presented in table 1 for clarity. 

The shock was reflected for an adjustable wedge of 4 cm width, placed just outside 
the exit plane of the shock tube, which is enclosed in a large dump tank. The flow 
was made visible by the shadowgraph technique or by differential interferometry. 
The light source was a dye laser pumped by a nitrogen laser (see Sandeman et al. 1979). 
This was triggered from the last of four shock-timing stations with a preset delay 
to 'catch' the shock a t  the right point. The light source provided a flash of 5 ns 
duration a t  a wavelength of 589+5 nm. Examples of the resolution that is typical 
of the photographs taken are given in figures 7 and 8. As can be seen, the resolution 
limit, measured e.g. by the shock thickness, is somewhere in the range 

0 1  mm < h < 0.5 mm. (13) 

4. Results and discussion 
Measured values of the dimensionless Mach stem length s/w are plotted against 

the shock angle 01 in figure 9 for four values of p,. As can be seen, the main behaviour 
is consistent with that of figure 6 ( a ) ,  though the results are not able to  confirm the 
merging towards the inviscid limit at high s/w. The transition angle is obtained by 
extrapolating to zero s/w the straight lines fitted to the experimental points of figure 
9. This value of a* is plotted against (Zv/h)i in figure 10, in which h is chosen to  match 
the slope to that estimated from theoretical arguments in $2.2 (equation 12). This 
match yields the smallest resolvable length in our experiments as 

h = 0.22 mm, (14) 

consistent with the range (13) estimated from the photographs. 

experimental value of the inviscid transition angle 
Extrapolating the straight line in figure 10 to the inviscid limit produces an 

(a")," - = 35.4 0.5' 

This is in excellent agreement with the calculated inviscid detachment (or sonic) 

(16) 
criterion 

at M ,  = 5.5, y = i. Note that this agreement is independent of the choice of A. Thus 
the experimental behaviour confirms the proposed mechanism in every way. 

O1& = 3 5 . 4 O  
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( b )  ( d )  

FIGURE 7 .  (a )  Shadowgraph of reflection near transition. ( b )  Enlarged portion of (a). ( c )  Mach 
reflection. Note that the portion of the incident shock on the sides of the wedge is visible through 
the Mach reflection because the transverse width of the wedge is smaller than the shock-tube 
diameter. (d )  Enlarged portion of (c). 

Finally, i t  is necessary to discuss an alternative way of determining a:. In  our 
experiment the variation of the Reynolds number was achieved by varying 1, a t  
constant A. According to  the mechanism we propose, one could equally effectively 
vary h at  constant I,. To examine what would happen in that case, consider a 
particular one of the set of curves in figure 6(a ) .  a* is obtained by extrapolating this 
curve to zero s /w.  If the error bar of the experimental measurements from which the 
curve is derived is increased, the curve effectively becomes thicker. Consequently the 
part of the curve that is used to  extrapolate to zero s/w has to be further from s / w  = 0. 
Hence the value of a* obtained by the extrapolation decreases as h increases. In other 
words: with a coarser resolution the observer needs to  use a larger Mach stem length 
to be able to extrapolate to zero. With a large Mach stem length a t  constant 1, the 
importance of the displacement thickness is reduced. Unfortunately our experiments 
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( b )  (C) 

FIGURE 8. Shadowgraphs of detail around the reflection point for (a )  regular, and (b ,  c) Mach 
reflection. Note the instability in the contact discontinuity in ( c ) .  The double image of the side 
portions of the incident shock in ( c )  indicates misalignment of the optics relative to  the shock. 

yield inaccurate results if the Mach stem length is allowed to  become too large, 
because of the limited size of the shock tube. It was therefore better t o  vary 1, at 
the smallest achievable h than to  t ry  to  measure one of the curves of figure 6 ( a )  up 
to  the inviscid asymptote. 
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0.10 I I I 

FIGURE 9. Experimental results. Dimensionless Mach stem length for: 0, p ,  = 70 Torr ; 0 , 2 5  Torr ; 
A, 10 Torr; 0, 5.0 Torr. 

(l,/h$ = Rei i  
FIGURE 10. Experimental results: transition angle as a function of Reynolds number. Note the 
calculated inviscid value of a* indicated by an arrow. Choosing h = 0 2 2  mm gives agreement of 
slope with theoretical estimate ( l l ) ,  (12). 

5.  Conclusions 
The experiment shows that the transition to  Mach reflection of strong shock waves 

in pseudosteady flow is significantly influenced by viscosity. I n  our experiments the 
effect reaches up to 7" in the shock angle. A mechanism is proposed which explains 
this increase of the transition shock angle quantitatively. We believe that this 
mechanism provides the explanation for the much-discussed persistence of regular 
reflection beyond the sonic criterion in pseudosteady flow. 

This work was supported by the Australian Research Grants Committee. 
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